Построенная по данным таблицы 1 трехмерная модель (Рис.4.) показывает, что наибольшее число землетрясений наблюдается при значениях амплитуды предыдущего изменения длительности дня равному 0,35-0,45 мс, и запаздыванию момента землетрясения на 3-4 дня относительно момента изменения направления ускорения планеты.
Для выбора оптимальных условий прогноза землетрясений на основе данных таблицы 1 и рис.4 построены графики вклада интенсивности сейсмических событий в общую сейсмичность в зависимости от величины триггерующего сигнала и дней, прошедших с момента резкого изменения направления ускорения (Рис.5.)
По графикам Рис.5 легко определить, например, что при триггерующем сигнале величиной 0,4 мс землетрясение произойдет на 4-5 день с вероятностью около 7%. Из графиков рис.5 следует, что наиболее вероятно возникновение сильного (М ≥ 6) землетрясения спустя 3-5 дней при триггерующем сигнале 0,35-0,4 мс и т.д. Эти данные позволяют сделать вывод о возможности определение сейсмического события за 48-120 часов до его наступления.
Тестирование указанных выводов было проведено в течение января - мая 2011 года. Для предварительной оценки возможного прогнозирования тектонического события были выбраны следующие "прогнозные" величины: а) величина ускорения между двумя точками смены знаков ускорения в пределах от 0,3 до 0,6 мс / сутки; б) запаздывание тектонического события относительно момента смены знака ускорения равно 4 суткам, то есть землетрясение должно произойти в течение указанного времени запаздывания. Как видно из представленного графика рис.6, за указанный период было определено семь прогнозных временных интервалов, в пределах которых ожидались сейсмические события высокой магнитуды (М>6). Видно, что в каждом прогнозном интервале всегда было отмечено, как минимум, одно ожидаемое сейсмическое событие с М ≥ 6. При этом задержка события относительно момента смены знака ускорения составляет от 2-х до 4-х суток.
Указанный временной интервал (январь-апрель 2011 г.) выбран ввиду присутствия в этом интервале двух крупных землетрясений: а) в пределах перуанского желоба у западного берега Ю. Америки (11 февраля, М=7,0); б) в пределах восточного берега о. Хонсю (11 марта, М=9; сегодня известное как землетрясение Тахиоку).
Генезис этих землетрясений совершено различен, что сразу отражается на рисунке формат-карты (Рис.6). Землетрясению 11 февраля 2011 г. (эпицентр расположен в пределах перуанского желоба) не предшествуют сейсмические события малого класса мощности (форшоки), все сейсмические явления ограничены во времени: резкое начало 11 февраля и быстрое затухание (афтершоки) к 14-15 февраля. Такое поведение массива, вероятно, характерно для сброса упругих напряжений в пределах желоба или крупного геологического разлома. Эпицентр землетрясения Тохиоку (11 марта 2011 г.) находится почти в центре огромной литологической плиты и поэтому подготовка землетрясения такого типа сразу же отражается на поведении производной скорости вращения Земли. Начиная с 4 марта, скорость Земли практически не изменяется до главного события (11 марта). В это время существенно уменьшилось число землетрясений с магнитудами от 5 до 6 (см. график на Рис.6). Такое положение существовало 5 дней, после чего последовал скачек во вращении Земли (10 марта) и следом за ним сброс напряжения массива - землетрясение 11 марта 2011 года с магнитудой 9 баллов.
Больше по географии:
Подземные воды
Существенным резервом в водном балансе могут служить возвратные воды, сбрасываемые в реки после использования подземных вод на водосборе [ 11, с. 118 ]. Значительная часть атмосферных осадков, выпадающих на земную поверхность, частично стекает по поверхности или внутрипочвенным путем в речную сеть, ...
Интеграционные процессы в современном мире и их география
Экономическая интеграция есть результат углубления процессов интернационализации, доведение их до уровня интеграции. Транснациональные корпорации и современная технологическая революция в громадной степени усиливают действие переплетающихся факторов хозяйственной жизни во всем мире. Главный участни ...
Температурный режим Ладожского озера
Температурный режим озера – один из важнейших энергетических факторов, контролирующих все протекающие в озере процессы. За время полевых работ Комплексная ладожская экспедиция измерила температуру воды на 2800 термических станциях. На основе этих многочисленных измерений собраны сведения о температ ...